38 research outputs found

    Cryptanalysis on Privacy-Aware Two-factor Authentication Protocol for Wireless Sensor Networks

    Get PDF
    Das first proposed two-factor authentication combining the smart card and password to resolve the security problems of wireless sensor networks (WSNs). After that, various researchers studied two-factor authentication suitable for WSNs. In user authentication protocols based on the symmetric key approach, a number of elliptic curve cryptography (ECC)-based authentication protocols have been proposed. To resolve the security and efficiency problems of ECC-based two-factor authentication protocols, Jiang et al. proposed a privacy-aware two-factor authentication protocol based on ECC for WSNs. However, this paper performs a vulnerability analysis on Jiang et al.’s authentication protocol and shows that it has security problems, such as a lack of mutual authentication, a risk of SID modification and DoS attacks, a lack of sensor anonymity, and weak ID anonymity

    Security Enhanced Anonymous Multi-Server Authenticated Key Agreement Scheme using Smart Card and Biometrics

    Get PDF
    Chuang and Chen propose an anonymous multi server authenticated key agreement scheme based on trust computing using smart card, password, and biometrics. Chuang and Chen say that this scheme not only supports multi-server but also achieves security requirements. but this scheme is vulnerable to masquerade attack, smart card attack, DoS attack and insufficient for perfect forward secrecy. To solve problems, this paper proposes security enhanced anonymous multi server authenticated key agreement scheme using smart card and biometrics

    Cryptanalysis and Improvement on Robust Three-Factor Remote User Authentication Scheme with Key Agreement for Multimedia System

    Get PDF
    A three-factor authentication combines biometrics information with user password and smart card to provide security-enhanced user authentication. An proposed user authentication scheme improved Das’s scheme. But An’s scheme is not secure against denial of service attack in login phase, forgery attack. Li et al. pointed out them and proposed three-factor remote user authentication scheme with key agreement. However, Li et al’s scheme still has some security problem. In this paper, we present a cryptanalysis and improvement of Li et al.’s remote user authentication scheme

    Cryptanalysis of and Improvement on Biometric-based User Authentication Scheme for C/S System

    Get PDF
    Password-based authentication schemes are convenient, but vulnerable to simple dictionary attacks. Cryptographic secret keys are safe, but difficult to memorize. More recently, biometric information has been used for authentication schemes. Das proposed a biometric-based authentication scheme, but it has various vulnerabilities. Jiping et al. improved Das’s scheme, but some vulnerabilities remain. In this paper, we analyze the cryptanalysis of Jiping et al.’s authentication scheme and propose the security enhanced biometric-based user authentication scheme for the C/S System

    Security Improvement on Biometric Based Authentication Scheme for Wireless Sensor Networks Using Fuzzy Extraction

    No full text
    Wireless sensor networks are used to monitor physical or environmental conditions. However, authenticating a user or sensor in wireless sensor networks is more difficult than in traditional networks owing to sensor network characteristics such as unreliable communication networks, resource limitation, and unattended operation. As a result, various authentication schemes have been proposed to provide secure and efficient communication. He et al. suggested a robust biometrics-based user authentication scheme, but Yoon and Kim indicated that their scheme had several security vulnerabilities. The latter then proposed an advanced biometrics-based user authentication scheme; in this paper, we analyze this advanced scheme and perform a cryptanalysis. Our analysis shows that Yoon and Kim's scheme has various security weaknesses such as a biometric recognition error, a user verification problem, lack of anonymity and perfect forward secrecy, session key exposure by the gateway node, vulnerability to denial of service attacks, and a revocation problem. Therefore, we suggest countermeasures that can be implemented to solve these problems and then propose a security-enhanced biometrics-based user authentication scheme using fuzzy extraction that conforms to the proposed countermeasures. Finally, we conduct a security analysis for the proposed biometrics-based user authentication scheme

    An Improvement of Robust Biometrics-Based Authentication and Key Agreement Scheme for Multi-Server Environments Using Smart Cards.

    No full text
    In multi-server environments, user authentication is a very important issue because it provides the authorization that enables users to access their data and services; furthermore, remote user authentication schemes for multi-server environments have solved the problem that has arisen from user's management of different identities and passwords. For this reason, numerous user authentication schemes that are designed for multi-server environments have been proposed over recent years. In 2015, Lu et al. improved upon Mishra et al.'s scheme, claiming that their remote user authentication scheme is more secure and practical; however, we found that Lu et al.'s scheme is still insecure and incorrect. In this paper, we demonstrate that Lu et al.'s scheme is vulnerable to outsider attack and user impersonation attack, and we propose a new biometrics-based scheme for authentication and key agreement that can be used in multi-server environments; then, we show that our proposed scheme is more secure and supports the required security properties

    Security enhanced multi-factor biometric authentication scheme using bio-hash function.

    No full text
    With the rapid development of personal information and wireless communication technology, user authentication schemes have been crucial to ensure that wireless communications are secure. As such, various authentication schemes with multi-factor authentication have been proposed to improve the security of electronic communications. Multi-factor authentication involves the use of passwords, smart cards, and various biometrics to provide users with the utmost privacy and data protection. Cao and Ge analyzed various authentication schemes and found that Younghwa An's scheme was susceptible to a replay attack where an adversary masquerades as a legal server and a user masquerading attack where user anonymity is not provided, allowing an adversary to execute a password change process by intercepting the user's ID during login. Cao and Ge improved upon Younghwa An's scheme, but various security problems remained. This study demonstrates that Cao and Ge's scheme is susceptible to a biometric recognition error, slow wrong password detection, off-line password attack, user impersonation attack, ID guessing attack, a DoS attack, and that their scheme cannot provide session key agreement. Then, to address all weaknesses identified in Cao and Ge's scheme, this study proposes a security enhanced multi-factor biometric authentication scheme and provides a security analysis and formal analysis using Burrows-Abadi-Needham logic. Finally, the efficiency analysis reveals that the proposed scheme can protect against several possible types of attacks with only a slightly high computational cost

    An Anonymous User Authentication and Key Agreement Scheme Based on a Symmetric Cryptosystem in Wireless Sensor Networks

    No full text
    In wireless sensor networks (WSNs), a registered user can login to the network and use a user authentication protocol to access data collected from the sensor nodes. Since WSNs are typically deployed in unattended environments and sensor nodes have limited resources, many researchers have made considerable efforts to design a secure and efficient user authentication process. Recently, Chen et al. proposed a secure user authentication scheme using symmetric key techniques for WSNs. They claim that their scheme assures high efficiency and security against different types of attacks. After careful analysis, however, we find that Chen et al.’s scheme is still vulnerable to smart card loss attack and is susceptible to denial of service attack, since it is invalid for verification to simply compare an entered ID and a stored ID in smart card. In addition, we also observe that their scheme cannot preserve user anonymity. Furthermore, their scheme cannot quickly detect an incorrect password during login phase, and this flaw wastes both communication and computational overheads. In this paper, we describe how these attacks work, and propose an enhanced anonymous user authentication and key agreement scheme based on a symmetric cryptosystem in WSNs to address all of the aforementioned vulnerabilities in Chen et al.’s scheme. Our analysis shows that the proposed scheme improves the level of security, and is also more efficient relative to other related schemes

    API-Based Software Birthmarking Method Using Fuzzy Hashing

    No full text

    Off-line password attack on Cao and Ge’s authentication scheme.

    No full text
    <p>Off-line password attack on Cao and Ge’s authentication scheme.</p
    corecore